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Abstract—Elucidating protein functions is critical to advance
our understanding of biological systems. However, the majority of
proteins lack functional annotations due to the pace of manual
knowledge-driven curation of the Gene Ontology (GO) terms.
Automatic function prediction (AFP) aims to computationally
infer these missing annotations by integrating sequence, interac-
tion, and ontology data. Current AFP methods have yet to fully
utilize heterogeneous relationships across multi-omics networks
between non-coding RNAs, proteins, and the GO hierarchies.
To address this, we introduce LATTE2GO, a novel graph
neural network that integrates protein, RNA, and GO function
entities and their interactions into a unified representation. By
extracting higher-order associations with attention mechanism,
LATTE2GO achieved significant gains over previous graph-based
AFP techniques on CAFA4 benchmarks. Our analyses revealed
modeling specific protein-protein interactions (PPI) and GO
relationships increases accuracy in predicting molecular functions
and biological processes. Overall, LATTE2GO demonstrates that
heterogeneous graph neural networks can integrate diverse omics
knowledge to advance systems-level understanding of protein
roles within the complex milieu of functional and physical
interaction networks.

Index Terms—Heterogeneous graphs, multi-omics, Gene On-
tology, protein-protein interactions, graph neural networks.

I. INTRODUCTION

Proteins, being the building blocks of life, are central
to nearly all molecular functions [1]. A comprehensive un-
derstanding of protein functions is crucial for advancing
biological insights. Despite the tremendous growth in the
number of identified protein sequences due to high-throughput
technologies, functional annotations for the vast majority of
proteins remain partly or entirely unknown. Therefore, AFP is
a promising in silico approach to bridge this knowledge gap,
especially where biochemistry experiments are constrained by
time, cost, and expertise [2].

The AFP task is formalized through the Critical Assess-
ment of Functional Annotation (CAFA) challenge [3], of-
fering benchmarks for validating protein-function associa-
tions. Function terms are standardized by the Gene Ontology
(GO) Consortium into three hierarchical ontologies: Molec-
ular Function (MF), Biological Process (BP), and Cellular

Component (CC). The AFP prediction task is a challenging
multi-label classification problem due to the large number
of terms, varied annotation frequencies, and complex inter-
term relationships. Additionally, there are multiple relation-
ships among terms that exist within and between the MF,
BP, and CC hierarchies, e.g., “is a”, “part of”, “has part”,
“up regulates”, “down regulates”, etc., which together form a
heterogeneous graph. Without considering these complexities,
an AFP method can only extract data from a single GO
relationship type or predict functions on a single ontology.

Learning protein representations from diverse data sources
is another challenge in AFP. Unlike the classical view fo-
cusing solely on a single protein molecule’s structure and
function, protein interactomics reveals the complex network
of interactions in which proteins operate [4] between multiple
interaction networks. This holistic perspective emphasizes the
contextual nature of protein functions within an extensive
network of interactions, where a protein’s function is the
context of its physical interactions, genetic interactions, and
other functional associations [5]. The effectiveness of this
approach for AFP is signified in recent works, where integrated
protein features from multi-modal data with PPI networks [6],
[7] are more likely to outperform the approaches that rely on a
single data type. Given the critical roles of other biomolecules
like non-coding RNAs in biological networks, incorporating
multi-omics interactions could further reveal associations vital
for elucidating protein functions, as complex biological events
usually involve the interplay of genes, transcripts, and proteins
[8]. Even when there are no direct interactions between certain
types of RNAs and proteins, it is possible to interrogate the
indirect multi-hop relationships by exploring and identifying
salient associations. Such networks, with nodes representing
RNAs or proteins and edges indicating interactions or func-
tional associations, present a flexible model for capturing the
complexity of the underlying data.

To model the complexity of GO terms and multi-omics
interactions, we propose aggregating these entities into a
knowledge graph with heterogeneous relationships. Utilizing
graph neural networks, our method, named LATTE2GO, ex-



Fig. 1: The LATTE2GO architecture aggregates heterogeneous relations up to k-hops around a pair of protein and GO term in
an integrated graph.

tracts valuable information from the graph structures among
RNAs, proteins, and GO terms. It combines multiple data
sources, including sequence features and interaction networks
into a unified framework. More specifically, we built a network
of Protein, MessengerRNA (mRNA), MicroRNA (miRNA),
and Long non-coding RNA (LncRNA) heterogeneous interac-
tions, along with GO terms. Key contributions of LATTE2GO
include: (1) extracting higher-order multi-omics relationships
from RNA-protein interactions and multi-relational protein-
protein associations; (2) learning GO function representa-
tions from multiple hierarchical ontologies; and (3) leverag-
ing attention graph neural networks for effective aggregation
of heterogeneous PPI and GO term relationships. Through
these mechanisms, LATTE2GO facilitates the inference of
functional properties of proteins from complex, large-scale
heterogeneous interaction networks, laying a robust foundation
for enhanced protein function predictions.

II. RELATED WORK

Several graph-based methods have tackled the AFP problem
utilizing protein network data. For instance, You et al. [9]
introduced DeepGraphGO, an end-to-end model employing
two GCN layers to integrate sequence-based protein features
and the STRING database’s PPI network [10]. Similarly,
DeepFunc [7] leveraged protein sequence data and DeepWalk
to derive protein representations from a merged PPI network of
STRING and BioGRID. These methods, however, overlook the
differentiation between types of protein-protein associations
by treating STRING PPI as homogeneous interactions, and by
conflating physical and genetic interactions into a single graph.
We posit that retaining the semantic information of specific
interaction mechanisms through heterogeneous graph struc-
tures can extract richer information from protein networks.
Although recent advancements in multi-relational and hetero-
geneous graph neural networks [11] offer promising avenues,

they haven’t been extensively explored in AFP literature nor
have they demonstrated the ability to generate higher-order
relations in multi-omics data.

On another front, various AFP methods aim to harness
the hierarchical structures of GO terms for improved protein
function prediction. DeepGOZero [12] leverages ontology-
derived axiom constraints to learn GO term representations,
enabling zero-shot predictions. HashGO [13] explored the
underlying GO term structure to boost protein function predic-
tion performance. Unlike these methods, our approach learns
features directly from the complete hierarchical ontology and
connects with protein network relations in an end-to-end
fashion, potentially offering a more integrated understanding
of protein functions.

III. METHODS

A. Data Integration

1) Heterogeneous Networks Construction: We constructed
an integrated graph from experimentally-validated public in-
teraction databases by collecting multiple interaction networks
among different RNA types and proteins. The databases em-
ployed, along with the criteria for relationship type integration,
are listed below. All miRNA, lncRNA, and mRNA transcript
names were harmonized across databases to standardized
identifiers, and proteins were indexed by the UniProt protein
ID. The integrative process encompassed:

• microRNA-mRNA interactions: from miRTarBase ver-
sion 9.0 [14] database, which has a total of 414,828
directed interactions, and from TarBase [15], which in-
cludes 966,000 interactions.

• microRNA-lncRNA interactions: from DIANA-lncBase
Experimental v3 [15], containing a total of 64,943 di-
rected interactions, and from RNAInter [16], conatining
72,261 interactions.



• lncRNA-protein interactions: from RNAInter [16],
which contain a total of 12,082,426 interactions.

• mRNA-Protein relationships: representing the one-
to-many mapping between mRNAs and proteins with
227,972 directed relationships, using the “gene name”
attribute of UniProtKB/Swiss-prot annotation.

• Protein-protein networks: Extracted from STRING
v11.5 database [10] with a subset of 239,987 proteins
from 15 species, resulting in more than 45 million inter-
actions.

We separated the different types of protein-protein associations
into multiple sub-graphs where edges in the respective edge
type have non-zero confidence score. Specifically, we obtained
17,556,841 “physical” interactions, which includes non-zero
scores in either “experimental”, “database”, or “textmining”
channels, 23,818,564 “co-expression” associations, 724,806
“co-occurrence” associations, 61,520 “fusion” associations,
and 2,889,167 “neighborhood” associations to create five
networks.

Utilizing the OpenOmics package [17], we efficiently com-
bined all nodes and edges data into an integrated graph
containing 86,927 lncRNAs, 199,025 mRNAs, 98,444 microR-
NAs, and 239,987 proteins. Overlapping edges were counted
once when multiple networks were integrated for the same
interaction type.

2) Gene Ontology Representation: We construct a hetero-
geneous graph to represent the entire Gene Ontology (GO)
structure and the various relationships among GO terms,
integrating it with the RNA-protein graph. The Gene Ontology
data [18] was downloaded in OBO format, and the edge
directionality was reversed for accurate representation. The se-
lected relationship types include “is a”, “part of”, “has part”,
“regulates”, “positively regulates”, and “negative regulates”,
where each encodes directed interactions, e.g., an edge i

is a→ j
signifies i as a parent term to j.

3) Protein Features: For each protein i is represented by
a feature vector xi generated from InterProScan, capturing
the count of InterPro signature matches in the sequence.
Specifically, xi ∈ Zm is a sparse vector where m is the number
of unique family, domain, and motif entries totaling 40,597 as
of InterPro Release 90.0 [19]. A memory-efficient row-sparse
matrix multiplication to obtain a low-dimensional vector rep-
resentation h

(0)
i ∈ Rd with h

(0)
i = ReLU


W(0)xi + b(0)


,

where W(0) ∈ Rd×m and b(0) ∈ Rd are learnable weights
and biases, respectively. In our model, only the proteins’ vector
representations are extracted from feature attributes.

B. LATTE2GO GNN Architecture

The Layer-stacked ATTention Embedding to Gene Ontology
(LATTE2GO) model architecture is illustrated in Figure 1.

1) Heterogeneous Graph Representation: We first define a
heterogeneous directed graph G = (V, E , T ,A) where each
node i ∈ V and edge eij ∈ E are associated with their entity
and relation type mapping function τ(i) : V  T and φ(eij) :
E  A, respectively. Generally |T | + |A| ≥ 2, where T and
A denote the sets of node and relation types.

a) Meta relations.: A directed edge eij links source
node i to target node j with a meta relation denoted as
〈τ(i),φ(eij), τ(j)〉. The set of all heterogeneous meta relation
types is A = {〈s, r, t〉 | s, t ∈ T }, with the subset of edges
with relation type r as Er = {eij | φ(eij) = r}.

b) Higher-order meta relations.: We extend to higher-
order meta-relations set A(l), l ≥ 1, representing l-hop meta-
paths as sequences of l meta relations:

A(l) = {〈u,w ◦ r, t〉 | v = s, 〈u,w, v〉 ∈ A(l−1), 〈s, r, t〉 ∈ A}
(1)

Here, A(1) = A, and ◦ denotes the composition operator. The
new edge set induced by a composed meta relation rc = ra◦rb
is Erc = {eik | φ(eik) = rc, eij ∈ Era , ejk ∈ Erb}.

c) Knowledge graph preprocessing.: We preprocess the
ground-truth heterogeneous graph, encompassing LncRNA,
MicroRNA, MessengerRNA, protein, and GO term node types,
by handling the undirected and directed edges from the ref-
erenced databases as respective meta relations. For undirected
meta relations ru ∈ A, like 〈Protein, experimental,Protein〉,
we ensure eji ∈ E , for every eij ∈ E where φ(eij) = φ(eji) =
ru. For directed meta relations rd ∈ A, a separate “reverse”
relation r−1

d is injected into A along with its reverse edges
{eji | ∀eij where φ(eij) = rd and φ(eji) = r−1

d } into E ,
to ensure message propagation between all node types while
maintaining the directed-ness semantics of the meta-relations.

2) Layer-stacked Attention on Meta-relations: Addressing
the multiplicity of relations tied to proteins and GO terms, we
hypothesize attention mechanisms as suitable for identifying
salient relations for classifying protein-function relationships.
Our model, LATTE2GO, employs the message-passing GNN
framework to organize messages from relation-specific neigh-
borhoods into contextualized embeddings. In the (l)-th LATTE
layer, each node i’s representation h

(l)
i ∈ Rd updates by

aggregating context embeddings from multiple relations as
follows:

h
(l)
i = Agg

∀r∈A(l)

τ(i)


AttREL (r, i) · hr

(l)
i



A(l)
τ(i) = {〈s, r, t〉 ∈ A(l) | t = τ(i)} ∪ {〈τ(i)〉}

(2)

where hr
(l)
i ∈ Rd represents node i’s context embedding from

relation r, and A(l)
τ(i) contains all l-hop meta relations with the

target node type τ(i), including the “self” node type 〈τ(i)〉 to
represent the self-connection. Note that we’re able to aggregate
meta-relations from multiple source types to each target type,
thus not constrained by predefined metapaths where s = t.

The self-attentional function AttREL adaptively infers the
relation attention coefficients for each target node i, with:

AttREL (r, i) = Softmax

∀r∈A(l)

τ(i)

(β(r, l, i) + µr)

β(r, l, i) = b(l)
r

⊤
f


hr
(l)
i h〈τ(i)〉

(l)
i



h〈τ(i)〉
(l)
i

= W
(l)
τ(i)h

(l−1)
i

(3)



where hr
(l)
i ∈ Rd, the output from the Graph Attention Net-

work (GAT) model [20], represents node i’s context embed-
ding given its neighbors from edges in relation r. Additionally,
b
(l)
r ∈ R2d and µr are the trainable attention vector and

bias scalar for relation r, respectively. W(l)
τ(i) ∈ Rd×d is the

trainable weight matrix for node type τ(i),  denotes the
concatenation, and f is the LeakyReLUα=0.2 activation function.

The aggregation step combines the context embeddings with
a weighted summation, employing H separate attention heads
for stability [20]:

Agg

∀r∈A(l)

τ(i)

(·) = LayerNorm


ReLU

 H

h=1



∀r∈A(l)

τ(i)

(·)


(4)

where if H > 1, then h
(l)
i and all parameters have hidden

dimension size divided by H and are separate for each head.
Given that each layer l output node representations that

contain context information aggregated only from l-hop meta
relations, the final embedding for node i is obtained by
stacking h

(l)
i from the outputs of L layers, as h′

i =
L
l=1 h

(l)
i ,

where h′
i ∈ RdL to be used for end-to-end training with

downstream tasks.
3) Computing Classification Scores Between Proteins and

GO Terms: For predicting functions of protein i, a sampled
subgraph is obtained from up-to-L-hops neighborhood expan-
sions [21] starting from a “seed nodes” set including protein
i and target classes set VGO. Despite the absence of relations
between i and VGO, node representations for proteins and GO
terms are computed simultaneously in a single feed-forward
pass of the LATTE layers. We employ DistMult [22] instead
of a final MLP layer to score the probability for class k ∈ VGO

as:
ŷik = σ


h′⊤
i Mτ(k)h

′
k


(5)

where σ is the sigmoid function, and Mτ(k) ∈ RdL×dL is a
trainable diagonal matrix for the ontology type τ(k).

For semi-supervised node classification learning, we use the
binary cross-entropy loss function:

L(Θ) = − 1

|VP ||VGO|


i∈VP



k∈VGO

yik log(ŷik)+(1−yik) log(1−ŷik)

(6)
where Θ represents the set of learnable parameters, VP is the
subset of protein nodes with ground-truth labels, and yik ∈
{0, 1} is the true binary indicator for protein i and function k.

C. Model Training and Implementation Details

For efficient training of LATTE2GO on a graph with
6.6M nodes and 71M edges, we employ mini-batch SGD
with subgraph sampling [21] and HGSampling [23], keeping
the node budget per layer equal to the batch size. High-
order meta-relations generation is CPU-parallelized using a
dynamic programming approach, leveraging efficient sparse
matrix multiplications. To manage the expanding size of the
higher-order relations set A(l) as seen in Eq. 1, we set rules:
(1) meta relations of identical source and target node types
can compose only if they share the same edge type, and

(2) filter meta-relations in the last layer to have the target
node type as the “seed nodes”. Additionally, (3) during the
composition of a high-order meta-relation rc = ra ◦ rb within
a sampled subgraph, we subsample the edges in ra and in
rc to maintain approximately K neighbors for each target
node. With these heuristics, LATTE2GO’s worst-case time
complexity is O


|A|L


|V|KL + |V|Kd


+ |V|Ld2


.

IV. EXPERIMENTAL RESULTS

A. Dataset Characteristics

We utilized the protein-GO annotation dataset from Deep-
GraphGO’s benchmark [9], constructed per the CAFA4 out-
line. The dataset comprises GO annotations for 239,987
UniProtKB-SwissProt protein sequences [24], with designated
training, validation, and testing sets based on time splits
before Jan. 2018, Dec. 2018, and Jan. 2020, respectively.
The ‘IDA’, ‘IPI’, ‘EXP’, ‘IGI’, ‘IMP’, ‘IEP’, ‘IC’, and ‘TA’
evidence-coded annotation set were collected from SwissProt1
[25] and UniProtGOA [26], with parent terms-propagated
annotations added for all child term annotations and alias GO
terms replaced with canonical names [27]. The sample size
characteristics across all models are detailed in Table I.

B. Experimental Settings

For generating node classification outcomes on the CAFA4
benchmark dataset, methods were trained and validated inde-
pendently on the Biological Process (BP), Molecular Function
(MF), and Cellular Component (CC) ontology. All models
were trained on identical training protein-function annota-
tions, with early-stopping monitored on the validation set
annotations, and evaluations conducted on the same test set
annotations. Employing a consistent evaluation protocol as
in [9] facilitates direct comparison with competing methods
presented in the referenced article.

1) Baseline Methods: We compare LATTE2GO with var-
ious AFP methods categorized into homologous sequence
transfer, sequence-only representation learning, and GNN-
based methods on homogeneous and heterogeneous PPI net-
works. The LR-InterPro method computes GO term class
scores using a linear transform followed by a sigmoid activa-
tion on protein feature vectors extracted from InterPro features.
BLAST-KNN employs BLAST to identify homologous proteins
for a query protein sequence, propagating GO term labels to
the query protein based on similarity scores. Sequence-based
models like DeepGOCNN and DeepGOPlus leverage 1D CNN
encoders for protein sequence representation, with the latter
combining CNN with sequence similarity-based predictions. In
the category of GNN-based methods, DeepGraphGO incorpo-
rates InterPro features and STRING database’s homogeneous
PPI network using graph convolutional networks (GCN). R-
GCN extends this by utilizing multi-relational PPI associations
and considering edge weights for node classification. HGT is a
state-of-the-art heterogeneous GNN model considering hetero-
geneous attention over each edge type without accounting for
edge weight information or GO graph representation learning.
Our proposed models, LATTE2GO-1 and LATTE2GO-2, differ



TABLE I: Sample size characteristics of dataset splits

Ontology Terms Train proteins Valid. proteins Test proteins
MFO 6868 51549 490 426
BPO 21381 85104 1570 925
CCO 2832 76098 923 1224

in the order of meta relations considered, with the former con-
sidering only first-order while the latter incorporates both first
and second-order meta relations, focusing solely on protein-
protein and GO-GO relations.

Common hyper-parameters across all methods include an
embedding dimension size of 512 and early stopping triggered
if the validation AUPR metric does not improve after five
epochs. For DeepGraphGO, R-GCN, and HGT, a two-layer
GNN is employed followed by an MLP layer for outputting
node labels, with training conducted end-to-end on InterPro
protein features. Regarding mini-batch subgraph sampling,
while DeepGraphGO employs full-neighborhood expansion at
each layer on a k-NN PPI subgraph with k = 30, R-GCN,
HGT, and LATTE2GO utilize HGSampling [23] on the entire
interaction set.

2) Evaluation Metrics: We employed Fmax and AUPR
(Area under Precision-Recall curve) metrics, as primary eval-
uation measures as per [3]. AUPR is pair-centric, evaluated
over predicted scores of protein-function pairs across 100
thresholds between 0.0 and 1.0. Fmax, a protein-centric mea-
sure, computes the maximum F1 score at any threshold on
classification scores among all GO term classes, averaged over
all proteins, defined as: Fmax = maxt


2·pr(t)·rc(t)
pr(t)+rc(t)


, where

pr(t) and rc(t) denote precision and recall at a positive-class
threshold value t, respectively, as outlined in [9].

C. Comparison Results

Table II presents the performance comparison of
LATTE2GO with baseline methods using Fmax and AUPR
metrics. In replicating the same experimental settings as in
DeepGraphGO’s article [9], LATTE2GO-1, R-GCN, and HGT
exhibit substantial performance improvement in BPO and
MFO over DeepGraphGO on both Fmax and AUPR metrics.
These methods also use InterPro protein features, but can
leverage STRING’s multi-relational protein-protein networks
for enhanced protein representations. This observation
supports our hypothesis that distinguishing between physical
and genetic protein-protein associations coupled with specified
genetic interaction types, enhances protein representation
learning and possibly better unveils functional associations
in varied biological contexts. Comparing LATTE2GO-1
with R-GCN and HGT shows a performance boost in BPO
Fmax. This suggests that the integration of GO’s multi-
relational associations graph could lead to improved GO
term representations, maintaining competitive classification
performance as in typical node classification settings,
especially given the large size of the BPO target classes.
Moreover, representing target classes as a graph posits a

TABLE II: Performance comparison results under Deep-
GraphGO’s experimental settings.

Method Fmax AUPR
MFO BPO CCO MFO BPO CCO

LR-InterPro 0.617 0.278 0.661 0.530 0.144 0.672
BLAST-KNN 0.590 0.274 0.650 0.455 0.113 0.570
DeepGOCNN 0.434 0.248 0.632 0.306 0.101 0.573
DeepGOPlus 0.593 0.290 0.672 0.398 0.108 0.595
DeepGraphGO 0.623 0.327 0.692 0.543 0.194 0.695
R-GCN 0.781 0.526 0.710 0.836 0.545 0.712
HGT 0.762 0.511 0.716 0.836 0.529 0.736
LATTE2GO-1 0.778 0.539 0.691 0.753 0.534 0.689
LATTE2GO-2 0.840 0.574 0.683 0.831 0.584 0.682

robust framework for inferring annotations on sparse or
unannotated terms in future investigations.

V. DISCUSSION

The performance improvement in LATTE2GO-2 over
LATTE2GO-1 highlights the efficacy of generating higher-
order meta relations. Unlike multi-layer RGCN and HGT,
which operate on a first-order graph structure across all layers,
our approach dynamically generates and aggregates meta rela-
tions. This methodology offers dual advantages: (1) it decou-
ples the higher-order metapath to retain semantic information
in higher-order neighborhoods, and (2) mitigates the ”over-
squashing” issue [28] by preventing the merging of higher-
order context with lower-order context across layers. Our
experiments indicate that employing second-order relations
yields satisfactory performance, aligning with the notion that
proteins with two-hop neighbors in the interaction topology
share similar characteristics and functions [29].

We additionally conducted an ablation study to evaluate the
impact of various core components in LATTE2GO: node and
interaction types selection, higher-order relationship genera-
tion, and concatenation of multiple higher-order embeddings.
The study utilized a grid search executed via Weight and Bi-
ases to explore all setting combinations of these components,
focusing on the BPO AUPR metrics on a test dataset of human-
and mouse-only proteins.

As depicted in Fig. 2, the ”Heterogeneous node types”
plot shows a dip in performance when including RNA node
types, with a more substantial decline when all seven node
types are included. Conversely, the protein-only or protein-
and-BPO configurations achieved the highest performance.
This outcome suggests that multi-omics RNA interactions with
proteins may not enhance function prediction in GNN-based
models, yet underscores the efficacy of learning both proteins
and GO representations within a single GNN architecture.
In the ”Split PPI interaction” types plot, we identified a
notable BPO AUPR improvement when treating the STRING
data as heterogeneous PPI, supporting our hypothesis of
multi-relational PPI for more accurate AFP. Other findings
indicate that generating second-order meta relations enhances
AUPR, though the effect of concatenating layer embeddings
in LATTE2GO-2 remains ambiguous.



Fig. 2: Ablation analysis reporting differences on AUPR metric on (1st) the heterogeneous graph node types, (2nd)separating
STRING protein-protein associations, (3th) generating higher-order meta-relations, and (4th) concatenating layer embeddings.

VI. CONCLUSION

This paper introduced LATTE2GO, a heterogeneous graph
neural network framework for automatic protein function pre-
diction, leveraging an integrated graph of RNAs, proteins, and
GO functions. Our method exploits the expressive representa-
tion of heterogeneous protein-protein associations alongside
a GO knowledge graph, enabling a rich semantic context
for deriving new relationships without the need for manually
crafted features. The versatility of this graph-based approach
opens avenues for enhanced AFP, especially when integrating
more complex data structures like the Enzyme Commission
Ontology and InterPro entities. Furthermore, the incorporation
of additional relations can enrich annotations with context-
specific information regarding the cellular context of protein
functions. The promising results from LATTE2GO suggest
potential for further exploration, especially in inductive pre-
diction settings with sparse protein interactions or missing
annotations on specific GO terms, paving the path for more
comprehensive and accurate protein function predictions.
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